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Conventional frequency response estimation methods such as the ‘‘H1’’ and ‘‘H2’’
methods often yield measured frequency response functions which are contaminated by the
presence of non-linearities and hence make it difficult to extract underlying linear system
properties. To overcome this deficiency, a new spectral approach for identifying
multi-degree-of-freedom non-linear systems is introduced which is based on a ‘‘reverse
path’’ formulation as available in the literature for single-degree-of-freedom non-linear
systems. Certain modifications are made in this article for a multi-degree-of-freedom
‘‘reverse path’’ formulation that utilizes multiple-input/multiple-output data from
non-linear systems when excited by Gaussian random excitations. Conditioned ‘‘Hc1’’ and
‘‘Hc2’’ frequency response estimates now yield the underlying linear properties without
contaminating effects from the non-linearities. Once the conditioned frequency response
functions have been estimated, the non-linearities, which are described by analytical
functions, are also identified by estimating the coefficients of these functions. Identification
of the local or distributed non-linearities which exist at or away from the excitation
locations is possible. The new spectral approach is successfully tested on several example
systems which include a three-degree-of-freedom system with an asymmetric non-linearity,
a three-degree-of-freedom system with distributed non-linearities and a five-degree-of-free-
dom system with multiple non-linearities and multiple excitations.
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1. INTRODUCTION

The properties of multi-degree-of-freedom linear systems are typically identified using time
or frequency domain modal parameter estimation techniques [1]. The frequency domain
techniques extract modal parameters from ‘‘H1’’ and ‘‘H2’’ estimated frequency response
functions in the presence of uncorrelated noise [2, 3]. However, if the system under
identification also possesses non-linearities, these conventional estimates often yield
contaminated frequency response functions from which accurate modal parameters cannot
be determined [4, 5]. Such conventional methods are also incapable of identifying the
non-linearities.

To accommodate the presence of non-linearities, several researchers have developed
methods to improve frequency domain analysis of non-linear systems [6–11]. For example,
the functional Volterra series approach for estimating higher order frequency response
functions of non-linear systems has gained recognition [6]. This method has been used to
estimate first and second order frequency response functions of a non-linear beam
subjected to random excitation [7], where curve fitting techniques were used for parametric
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estimation of an analytical model. However, the method is very computationally intensive
and estimation of third and higher order frequency response functions has been
unsuccessful. To alleviate this problem, sinusoidal excitation was used to estimate only the
diagonal second and third order frequency response functions of the Volterra series [8].
Other higher order spectral techniques have also been employed for the analysis of
non-linear systems [9]. For instance, the bi-coherence function has been used to detect the
second order non-linear behaviour present in a system [10]. Also, the sub-harmonic
responses of a high speed rotor have been studied using bi-spectral and tri-spectral
techniques [11].

An alternative approach has recently been developed by Bendat et al. [12–15] for
single-input/single-output systems which identifies a ‘‘reverse path’’ system model. A
similar approach has been used for the identification of two-degree-of-freedom non-linear
systems where each response location is treated as a single-degree-of-freedom mechanical
oscillator [16]. Single-degree-of-freedom techniques are then used to identify system
parameters [17]. However, this approach requires excitations to be applied at every
response location and it also inhibits the use of preferred higher dimensional parameter
estimation techniques that are commonly used for the modal analysis of linear systems [1].

The literture review reveals that there is clearly a need for frequency domain system
identification methods that can identify the parameters of non-linear mechanical and
structural systems. Also, improvements to the frequency response estimation methods such
as the ‘‘H1’’ and ‘‘H2’’ methods are necessary when measurements are made in the presence
of non-linearities. The primary purpose of this article is to introduce an enhanced
multi-degree-of-freedom spectral approach based on a ‘‘reverse path’’ system model.
Additional discussion is included to justify the need for spectral conditioning and
computational results are given to illustrate the performance on several non-linear systems.
However, focus of this article is on the mathematical formulation for multi-degree-of-free-
dom non-linear systems. Specific objectvies include the following: (1) to accommodate for
the presence of non-linearities so that improved estimates of the linear dynamic compliance
functions can be determined from the input/output data of multi-degree-of-freedom
non-linear systems when excited by Gaussian random excitations; (2) to estimate the
underlying linear systems’ modal parameters from these linear dynamic compliance
functions using higher dimensional modal analysis parameter estimation techniques;
(3) to determine the coefficients of the analytical functions which describe local or
distributed non-linearities at or away from the locations where the excitations are
applied; (4) to assess the performance of this new method via three computational
examples with polynomial type non-linearities. Comparison of this method with an
existing time domain method is in progress, and ongoing research is being conducted to
consider both correlated and uncorrelated noise. Issues such as the spectral variability of
coefficient estimates as well as other errors are currently being examined and will be
included in future articles. However, these issues have been omitted from this article so
that focus can be kept on introducing an analytical approach to multi-degree-of-freedom
systems.

2. PROBLEM FORMULATION

2.1.  

The equations of motion of a discrete vibration system of dimension N with localized
non-linear springs and dampers can be described in terms of a linear operator L[x(t)] and
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a non-linear operator N[x(t), ẋ(t)]:

L[x(t)]+N[x(t), ẋ(t)]= f(t), L[x(t)]=Mẍ(t)+Cẋ(t)+Kx(t),

N[x(t), ẋ(t)]= s
n

j=1

Aj yj (t), (1a–c)

where M, C and K are the mass, damping and stiffness matrices, respectively, x(t) is the
generalized displacement vector and f(t) is the generalized force vector. Also refer to the
appendix for the identification of symbols. The non-linear operator N[x(t), ẋ(t)] contains
only the non-linear terms which describe the localized constraint forces and this operator
is written as the sum of n unique non-linear function vectors yj (t) representing each jth
type of non-linearity present (e.g., quadratic, cubic, fifth order, etc.). Considering only
non-linear elastic forces, each yj (t) is defined as yj (t)= {Dxk (t)mj}, where Dxk (t) is the
relative displacement across the kth junction where the jth type of non-linearity exists, and
mj is the power of the jth type of non-linearity. These vectors yj (t) are column vectors of
length qj , where qj is the number of locations the jth type of non-linearity exists. Note that
a single physical junction may contain more than one type of non-linearity (e.g., a
quadratic and cubic); therefore, more than one yj (t) is necessary to describe the non-linear
constraint force across that particular junction, as illustrated in the examples to follow.
The coefficient matrices Aj contain the coefficients of the non-linear function vectors and
are of size N by qj . Inserting equations (1b) and (1c) into equation (1a), the non-linear
equations of motion take the form

Mẍ(t)+Cẋ(t)+Kx(t)+ s
n

j=1

Aj yj (t)= f(t). (2)

From a system identification perspective, it is assumed that the types of non-linearities and
their physical locations are known. Therefore the n non-linear function vectors yj (t) can
be calculated; also, the coefficients of yj (t) can be placed in the proper element locations
of the coefficient matrices Aj . This assumption renders limitations on the practical use of
this method since various types of non-linearities at each location are not always known.
Therefore, research is currently being conducted to alleviate this limitation. However, it
should be noted that this restriction is currently true for any identification scheme when
applied to practical non-linear systems.

Consider several multi-degree-of-freedom non-linear systems as illustrated in Figure 1.
The first example as shown in Figure 1(a) possesses an asymmetric quadratic–cubic
non-linear stiffness element which exists between the second and third masses and a
Gaussian random excitation is applied to the first mass:

f e
23 (t)= k2 (x2 (t)− x3 (t))+ a2 (x2 (t)− x3 (t))2 + b2 (x2 (t)− x3 (t))3,

f(t)= [ f1 (t) 0 0]T. (3a, b)

Assuming that the form of the non-linear elastic force f e
23 (t) is known, the non-linear

operator N[x(t), ẋ(t)], the non-linear functions (y1 (t) and y2 (t)) and their respective
coefficient matrices (A1 and A2) take the form

N[x(t), ẋ(t)]=A1 y1 (t)+A2 y2 (t), y1 (t)= (x2 (t)− x3 (t))2,

y2 (t)= (x2 (t)− x3 (t))3, A1 = (0 a2 −a2)T, A2 = (0 b2 −b2)T. (4a–e)
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Notice, since two types of non-linearities (quadratic and cubic) exist at a single junction,
yi (t) and y2 (t) both contain the same relative displacements. Example II of Figure 1(b)
has distributed cubic stiffness non-linearities at every junction and a Gaussian random
excitation is applied to the first mass. Therefore,

f e
12 (t)= k1 (x1 (t)− x2 (t))+ b1 (x1 (t)− x2 (t))3,

f e
23 (t)= k2 (x2 (t)− x3 (t))+ b2 (x2 (t)− x3 (t))3,

f e
3 (t)= k3 x3 (t)+ b3 x3 (t)3, f(t)= [ f1 (t) 0 0]T,

N[x(t), ẋ(t)]=A1 y1 (t),

y1 (t)= [(x1 (t)− x2 (t))3 (x2 (t)− x3 (t))3 x3 (t)3]T, (5a–g)

A1 = & b1

−b1

0

0
b2

−b2

0
0
b3'.

Here a single type of non-linearity exists at three junctions. Therefore, y1 (t) is a 3 by 1
column vector. Example III of Figure 1(c) is composed of a cubic non-linear stiffness
element between the second and third masses and an asymmetric non-linear stiffness

Figure 1. Example cases. (a) I: three-degrees-of-freedom system with a local asymmetric quadratic–cubic
non-linearity f e

23(t) and one excitation f1(t); (b) II: three-degree-of-freedom system with distributed cubic
non-linearities f e

12(t), f e
23(t), f e

3 (t), and one excitation f1(t); (c) III: five-degree-of-freedom system with a local cubic
non-linearity f e

23(t), a local asymmetric quadratic–fifth order non-linearity f e
53(t) and two excitations f1(t) and f4(t).

All excitations are Gaussian random with zero mean and variance one.
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T 1

Linear modal properties of example systems shown in Figure 1

Example Mode Natural frequency (Hz) % Damping Eigenvector

1 22·4 0·7 {1·00, 0·80, 0·45}
I, II 2 62·8 2·0 {−0·80, 0·45, 1·00}

3 90·7 2·9 {−0·45, 1·00, −0·80}

1 11·1 0·7 {0·23, 0·44, 0·61, 0·32, 1·00}
2 30·3 1·9 {0·78, 1·00, 0·49, 0·39, −0·26}

III 3 44·3 2·8 {−0·57, −0·26, 0·45, 1·00, −0·09}
4 59·0 3·7 {1·00, −0·75, −0·44, 0·59, 0·04}
5 72·3 4·6 {0·28, −0·60, 1·00, −0·47, −0·06}

T 2

Linear and non-linear elastic force coefficients of example systems

Example Linear Non-linear

I k2 =100 kN/m a2 =−8 MN/m2, b2 =500 MN/m3

II k1 = k2 = k3 =100 kN/m b1 = b2 = b3 =1 GN/m3

III k3 = k6 =50 kN/m b3 =500 MN/m3, a6 =−500 kN/m2, g6 =10 GN/m5

T 3

Simulation and signal processing parameters: total number of samples
=214h, Dt=0·5 ms, total period=213h ms, Hanning window, 213

samples/average, 2h averages

Example h Magnitude of Gaussian excitation(s)

I 15 5 kN
II 10 500 N
III 15 2 kN (both excitations)

element described by a quadratic and fifth order term between the third and fifth masses.
Gaussian random excitations are applied to masses 1 and 4 of this system. Therefore,

f e
23 (t)= k3 (x2 (t)− x3 (t))+ b3 (x2 (t)− x3 (t))3,

f e
53 (t)= k6 (x5 (t)− x3 (t))+ a6 (x5 (t)− x3 (t))2 + g6 (x5 (t)− x3 (t))5,

f(t)= [ f1 (t) 0 0 f4 (t) 0]T,

N[x(t), ẋ(t)]=A1 y1 (t)+A2 y2 (t)+A3 y3 (t),

y1 (t)= (x2 (t)− x3 (t))3, y2 (t)= (x5 (t)− x3 (t))2, y3 (t)= (x5 (t)− x3 (t))5,

A1 = (0 b3 −b3 0 0)T, A2 = (0 0 −a6 0 a6)T,

A3 = (0 0 −g6 0 g6)T. (6a–j)

The modal parameters of the underlying linear systems (i.e., systems with Aj = 0) are given
in Table 1 and the coefficients of the non-linear elastic forces (i.e., the elements of Aj ) are
given in Table 2 in terms of a, b and g, where a is the coefficient of the quadratic
non-linearities, b is the coefficient of the cubic non-linearities and g is the coefficient of
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the fifth order non-linearity. The linear elastic force coefficients are also given in Table 2
for comparison purposes to illustrate the strength of the non-linearities.

2.2.  

The problem statement is as follows: identify the modal parameters of Table 1 and the
coefficients of the non-linear elastic force terms of Table 2 by a spectral technique. Taking
the Fourier transform F[ . ] of equation (2),

B(v)X(v)+ s
n

j=1

Aj Yj (v)=F(v),

X(v)=F[x(t)], Yj (v)=F[yj (t)], F(v)=F[f(t)],

B(v)=−v2M+ ivC+K. (7a–c)

Figure 2. Dynamic compliance estimate of Example I. ——, ‘‘H1’’ estimation; – – –, true linear dynamic
compliance function synthesized from the underlying linear system’s modal parameters listed in Table 1. (a)
Magnitude of H21; (b) phase of H21.
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Figure 3. Dynamic compliance estimate of Example II. ——, ‘‘H1’’ estimation; – – –, true linear dynamic
compliance function synthesized from the underlying linear system’s modal parameters listed in Table 1. (a)
Magnitude of H21; (b) phase of H21.

The system (7a) is composed of a linear dynamic stiffness matrix B(v), and terms
representing the non-linear elastic forces Aj Yj (v). Using frequency domain based higher
dimensional modal parameter estimation techniques [1], the modal parameters are
extracted from the linear dynamic compliance matrix H(v)=B(v)−1, or derivatives
thereof. Two common methods for estimating the dynamic compliance matrix (i.e., ‘‘H1’’
and ‘‘H2’’ frequency response estimation methods [2, 3]) can be applied directly to
multiple/input-ouput data from a non-linear system excited by Gaussian random
excitation. However, effects from the presence of the non-linear elastic forces Aj Yj (v) can
corrupt the underlying linear characteristics of the response causing non-Gaussian output
and resulting in estimated dynamic compliance functions which often lead to erroneous
results from modal parameter estimation. These non-linear effects are illustrated using
numerically simulated data from the example systems. A fifth order Runge–Kutta Fehlberg
numerical integration method is used to calculate the response data. Also, high frequency
numerical simulation errors are minimized by choosing a Nyquist frequency eight times
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greater than the frequency range of interest. Refer to Table 3 for simulation and signal
processing parameters.

An ‘‘H1’’ estimated dynamic compliance function of Example 1 is shown in Figure 2
along with the actual linear dynamic compliance function synthesized from the underlying
linear system’s modal parameters of Table 1. Comparing these two curves it can be seen
that incorrect natural frequencies and damping ratios will result from modal parameter
estimation of the first two modes of the ‘‘H1’’ estimated dynamic compliance function and
modal information of the third mode is unattainable. Likewise, a dynamic compliance
function of Example II is identified by the ‘‘H1’’ estimation method. Since non-linearities
exist at each junction of this sytem, every mode is effected dramatically as can be seen in
Figure 3. Modal parameters cannot be identified from this result. Finally, Figure 4
illustrates the effects of the non-linearities on the ‘‘H1’’ estimate of a dynamic compliance
function of Example III. Although parameter estimation of the first mode may yield modal
parameters that are only in slight error, the second, third and fourth modes are ‘‘noisy’’
and have distorted natural frequencies, damping, magnitude and phase characteristics.

Figure 4. Dynamic compliance estimate of Example III. ——, ‘‘H1’’ estimation; – – –, true linear dynamic
compliance function synthesized from the underlying linear system’s modal parameters listed in Table 1. (a)
Magnitude of H11; (b) phase of H11.
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Figure 5. ‘‘Reverse path’’ spectral model.

Figure 6. Component representation of ‘‘reverse path’’ model’s inputs. (a) Second non-linear function vector;
(b) third non-linear function vector; (c) total response vector.

Parameter estimation of these modes will yield incorrect results and parameters of the fifth
mode are unidentifiable.

One might argue that an improved estimate of the linear dynamic compliance functions
could simply be obtained by exciting the systems at lower excitation levels, hence
minimizing the non-linear effects. However, reducing excitation levels to minimize the
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effects of non-linearities makes the concurrent identification of the non-linearities even
more difficult. Also, for massive structures, large excitation levels may indeed be necessary
in order to produce measurable responses at all of the desired output locations. Finally,
non-linear structures should be identified using excitation levels comparable to those
experienced under real conditions (which may entail large excitations). To address these
issues, a multi-degree-of-freedom ‘‘reverse path’’ method is proposed in this article. The
examples of Figure 1 will be used to illustrate its potential. This method starts with a
‘‘reverse path’’ model as discussed in the following section.

3. ‘‘REVERSE PATH’’ FORMULATION

The concept of a ‘‘reverse path’’ model for single-degree-of-freedom systems is adapted
from the works of Bendat et al. [12–15] but it is generalized here for the application to
multi-degree-of-freedom systems. A multi-degree-of-freedom ‘‘reverse path’’ model as
shown in Figure 5 is derived by re-arranging equation (7a) with F(v) as the output and
X(v) and Yj (v) as the inputs:

F(v)=B(v)X(v)+ s
n

j=1

Aj Yj (v). (8)

Observe that the matrices B(v) and Aj can be identified directly by measuring X(v) and
F(v) and calculating Yj (v). Recall, it is assumed that the types and locations of the
non-linearities are known, therefore Yi (v)=F[yi (t)] can be calculated. For this initial
derivation, assume that excitations are applied at each response location (i.e., F(v) is a
fully populated N by 1 column vector). The single-sided power spectral density (PSD)
matrices GXF (v), G1F (v), G2F (v), . . . , GnF (v) are defined as follows where the frequency
dependence (v) has been dropped for the sake of brevity:

GXF =
2
T

E[X*FT]=
2
T

E$X*0(BX)T + s
n

j=1

(Aj Yj )T1%=
2
T

E$X*XTBT + s
n

j=1

(X*YT
j AT

j )%
=GXX BT + s

n

j=1

GXj A
T
j ,

G1F =
2
T

E[Y*1 FT]=
2
T

E$Y*1 0(BX)T + s
n

j=1

(Aj Yj )T1%=
2
T

E$Y*1 XTBT + s
n

j=1

(Y*1 YT
j AT

j )%
=G1X BT + s

n

j=1

G1j AT
j ,

···

GiF =GiX BT + s
n

j=1

Gij AT
j , i=1, 2, . . . , n, (9a–c)
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Figure 7. System models with uncorrelated inputs: (a) ‘‘reverse path’’ model with uncorrelated multiple input
vectors; (b) ‘‘forward path’’ for the underlying linear system model.

Figure 8. Illustration of the recursive algorithm given by equation (23) for r=3.
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Figure 9. Linear dynamic compliance estimates of Example I. – – –, ‘‘H1’’ estimate; ——, conditioned ‘‘Hc2’’
estimate; w, true linear dynamic compliance function. (a) Magnitude of H11; (b) phase of H11.

where E[ . ] is the expected value and T is the time window. The superscripts (*) and T
indicate complex conjugate and transpose, respectively. Note, the PSD functions are used
here for the mathematical formulation, as in reference [14]. The power spectrum (PS)
formulation could have been used as well. This should not effect the performance of the
proposed method. The spectral density matrices GXF and GXX are N by N matrices, GiF and
GiX are qi by N matrices, GXi are N by qi matrices, and Gij are qi by qj matrices. Equations
(9a–c) can be written in matrix form:
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G=JCT, G=[GT
XF GT

1F GT
2F · · · GT

iF · · · GT
nF]T,

GXX GX1 GX2 · · · GXj · · · GXn

G1X G11 G12

G2X G21 G22
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···

··· G
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, (10a–d)

GiX Gij

···
···

GnX · · · Gnn

C=[B A1 A2 · · · Aj · · · An ].

Figure 10. Linear dynamic compliance estimates of Example I. – – –, Conditioned ‘‘Hc1’’ estimate; ——,
conditioned ‘‘Hc2’’ estimate; w, true linear dynamic compliance function. (a) Magnitude of H31, (b) phase of H31.
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Here G is N+ p by N, J is N+ p by N+ p and C is N by N+ p where p= sn
j=1 qj .

Solving for CT results in the simultaneous solution of all of the system matrices,

CT =J−1G. (11)

If, as initially assumed, the excitation vector is fully populated, C will be completely
identified by the solution of equation (11), resulting in a full linear dynamic stiffness matrix
B and identification of all of the elements of the coefficient matrices Aj . Therefore, all of
the coefficients of the terms describing the non-linearities can be identified from the
elements of Aj . Also, the linear dynamic compliance matrix can be calculated (i.e.,
H=B−1) from which modal parameters can be estimated. However, practically speaking,
excitations are not normally applied at every response location. Therefore, measured F	 will
only be a vector of length M where M is the number of applied excitations and typically
MQN. Note that the tilde indicates a measured quantity and since the systems of Figure 1
represent physical systems for this article, the term ‘‘measured’’ and the tilde are used to
indicate quantities which are obtained directly from the numerically simulated
input/output data of these systems. Consequently, only the rows of C	 corresponding to
the locations where excitations are applied can be identified. The rest of the elements of
C	 cannot be identified. This is illustrated by application of this approach to Example I.
Recall A1 and A2 from equations (4d, e); therefore equation (10d) takes the form

C=[B A1 A2]= &B11

B21

B31

B12

B22

B32

B13

B23

B33

0
a2

−a2

0
b2

−b2'. (12)

Excitation is applied to the first-degree-of-freedom, i.e., F	 =F	 1 (notice that this is a
location away from the location of the non-linearity which is between masses 2 and 3).
Therefore, only the first column of the measured spectral density matrices involving F	 are
calculated, resulting in only the first column of G	 = [G	 T

xF1
G	 1F1 G	 2F1]

T. The measured
matrix J	 takes the form

J	 = &G	 XX

G	 1X

G	 2X

G	 X1

G	 11

G	 21

G	 X1

G	 12

G	 22'. (13)

Solving for C	 , only the first row is identified,

C	 = [C	 11 C	 12 C	 13 C	 14 C	 15]. (14)

Comparing equations (14) and (12), notice that only B11, B12 and B13 are recovered. The
elements containing a2 and b2 are not recovered and therefore no information about the
coefficients of the non-linearities is obtained. This is due to the fact that the location of
the non-linearity is away from the applied excitation. Also note that although B21 and B31

are also determined from reciprocity (i.e., B21 =B12, B31 =B13), the resulting B is singular
and therefore H=B−1 cannot be calculated. As a consequence, modal parameter
estimation cannot be employed to estimate the underlying linear system’s natural
frequencies, damping ratios and mode shapes. This illustrates the necessity for the
conditioned ‘‘reverse path’’ system approach that will be discussed in the following
sections. These refinements are needed to estimate the coefficients of the non-linearities
away from the locations of the applied excitations and also allow for the identification of
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the linear dynamic compliance matrix H when an excitation vector of length MQN is
applied.

4. CONDITIONED ‘‘REVERSE PATH’’ FORMULATION

As with the ‘‘reverse path’’ model, the concepts of this section are developed from the
works of Bendat et al. [12–15]; but again, these concepts are generalized for the application
to multi-degree-of-freedom systems. The problems discussed in section 3 are overcome by
decomposing the model of Figure 5 into uncorrelated paths. This is accomplished by
constructing a hierarchy of uncorrelated response components in the frequency domain.
To illustrate this, consider Example III. Observe that the spectra of the second non-linear
function vector Y2 can be decomposed into a component which is correlated with the
spectra of the first non-linear function vector Y1, denoted by Y2(+1), through a frequency
response matrix L12, and a component which is uncorrelated with the spectra of the first
non-linear function vector, denoted by Y2(−1). This is illustrated in Figure 6(a).
Consequently, the spectral component of the second non-linear function vector
uncorrelated with the spectra of the first non-linear function vector can be calculated:

Y2(−1) =Y2 −Y2(+1) =Y2 −L12 Y1. (15)

Likewise, the spectra of the third non-linear function vector Y3 can be decomposed into
a component which is correlated with the spectra of the first and second non-linear
function vectors, Y3(+1) and Y3(+2) respectively, and a component uncorrelated with the
spectra of the first and second non-linear function vectors, Y3(−1:2), as shown in Figure 6(b).
Note that Y3(+2) is a result of Y2(−1) and not Y2. The spectral component of the third
non-linear function vector uncorrelated with the spectra of the first and second non-linear
function vectors is calculated by

Y3(−1:2) =Y3 −Y3(+1) −Y3(+2) =Y3 −L13 Y1 −L23 Y2(−1). (16)

In general,

Yi(−1:i−1) =Yi − s
i−1

j=1

Lji Yj(−1:j−1). (17)

The subscripts can be understood as follows. The i outside of the parentheses signifies a
spectral component of the ith non-linear function vector, and (−1 : j−1) indicates that
this component is uncorrelated with the spectra of the non-linear function vectors 1
through j−1 (the minus signs signify uncorrelated with, while the plus signs such as those
in the subscripts of equation (16) signify correlated with). The Lji are determined using the
conditioned ‘‘Hc1’’ frequency response function estimation method:

LT
ji =G−1

jj(−1 : j−1) Gji(−1 : j−1), (18)

where Gjj(−1:j−1) and Gji(−1:j−1) are conditioned PSD matrices involving spectral components
of the ith and jth non-linear function vectors uncorrelated with the spectra of the first
through the ( j−1)th non-linear function vectors. Calculation of these PSD matrices is
delayed until section 5. With this hierarchy established, the response vector can now be
decomposed into the summation of a linear spectral component and each of the
uncorrelated non-linear spectral components as shown in Figure 6(c). The component X(+i)

is a spectral component from the ith non-linear function vector. The relationship between
X(+i) and the non-linear spectral component Yi(−1:i−1) is through the frequency response
matrix LiX . The spectral component X(−1:n) is the component of the response uncorrelated



. .   . 688

T 4

Estimated modal properties using conditioned ‘‘Hc2’’ estimates

Natural %
Example Mode frequency (Hz) Damping Eigenvector

1 22·3 0·2 {1·00, 0·81+0·01i, 0·45}
I 2 62·8 2·0 {−0·79, 0·41+0·02i, 1·00}

3 90·8 3·1 {−0·48+0·06i, 1·00, −0·82−0·05i}

1 22·4 0·6 {1·00, 0·81, 0·45}
II 2 62·7 1·9 {−0·79, 0·41+0·02i, 1·00}

3 90·7 3·1 {−0·49+0·06i, 1·00, −0·81−0·05i}

1 11·0 0·0 {0·15, 0·26, 0·52−0·02i, 0·28−0·01i, 1·00}
2 30·2 1·9 {0·78, 1·00, 0·52+0·03i, 0·40+0·02i,

−0·13−0·07i}

III 3 44·2 2·7 {−0·55−0·02i, −0·24+0·01i,
0·43+0·01i, 1·00, −0·08−0·01i}

4 58·9 3·6 {1·00, −0·73−0·02i, −0·65−0·08i, 0·65,
0·06}

5 67·1 4·5 {0·29+0·70i, −0·84+0·31i, 1·00,
−0·43−0·15i, −0·06−0·01i}

T 5

Error and MAC between actual and estimated modal properties of Tables 1 and 4,
respectively

% error= =estimated−actual=
actual · 100

Example Mode Natural frequency % Damping MAC

1 0.3 70.0 1.0
I 2 0.1 0.5 1.0

3 0.1 8.4 1.0

1 0.1 10.0 1.0
2 0.0 2.5 1.0

II 3 0.1 9.8 1.0

1 1.1 95.7 1.0
2 0.4 2.1 1.0

III 3 0.1 2.2 1.0
4 0.0 3.0 1.0
5 7.2 0.9 0.8

with the spectra of all n non-linear function vectors. In other words, X(−1:n) is the linear
spectral component of the response. This component is calculated by

X(−1:n) =X− s
n

j=1

X(+j) =X− s
n

j=1

LjX Yj(−1:j−1). (19)

The LjX are estimated using the conditioned ‘‘Hc1’’ frequency response estimation method
(18) with i replaced by X.

With the response decomposed into uncorrelated spectral components, Figure 5 can be
redrawn with n+1 uncorrelated input vectors as shown in Figure 7(a). Comparing these
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figures, notice that the coefficient matrices between each Yj(−1:j−1) and F(−1:j−1) are not
the original coefficient matrices, Aj , between Yj and F. This alteration is necessary in
order for the overall output, F, to remain unchanged. The original coefficient matrices
are recovered once B is identified as covered in section 6. However, the path between
X(−1:n) and F(−1:n) remains unchanged. This path is the linear dynamic stiffness matrix B and
its input and output vectors are uncorrelated with all of the spectra of the non-linear function
vectors. Therefore, the underlying linear system can be identified without any corruption
from the non-linearities. Since linear techniques (i.e., modal parameter estimation
techniques) normally involve the dynamic compliance matrix H, and not the dynamic
stiffness matrix B, identification of the linear path is conducted by re-reversing the flow of the
linear path as illustrated in Figure 7(b). Now, any of the conventional frequency

Figure 11. Estimation of the non-linear elastic force coefficient a2 of Example I. ——, Estimation by equation
(31); w, true value of coefficient. (a) Real part of a2; (b) imaginary part of a2.
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response estimation methods can be modified to estimate H. For example, the
conditioned ‘‘Hc1’’ and ‘‘Hc2’’ estimates of the linear dynamic compliance matrix are as
follows:

conditioned ‘‘Hc1’’ estimate: HT =G−1
FF(−1:n) GFX(−1:n);

conditioned ‘‘Hc2’’ estimate: HT =G−1
XF(−1:n) GXX(−1:n).

(20a, b)

Once the conditioned frequency response functions have been estimated, modal analysis
techniques can be used to extract natural frequencies, damping ratios and mode shapes
without influence of the non-linearities. Other modal indicators can also be used to
evaluate the number of modes in the frequency range [1].

5. ESTIMATION OF POWER SPECTRAL DENSITY MATRICES

In order to estimate the linear dynamic compliance matrix by the conditioned estimates
(20a, b), it is necessary to calculate conditioned PSD matrices. Calculation of these
matrices begins with the calculation of unconditioned PSD matrices which are determined
directly from the response vector X, the excitation vector F and the non-linear function
vectors Yj :

GXX =
2
T

E[X*XT], GXF =
2
T

E[X*FT], GFF =
2
T

E[F*FT], Gii =
2
T

E[Y*i YT
i ],

Gij =
2
T

E[Y*i YT
j ], GiX =

2
T

E[Y*i XT], GiF =
2
T

E[Y*i FT]. (21a–g)

The conditioned PSD matrices are more laborious to calculate [18]. These PSD matrices
involve the response components (e.g., X(−1:n), Yi(−1:i−1)). For example, the auto-PSD matrix
involving Y2(−1) is

G22(−1) =
2
T

E[Y*2(−1) YT
2(−1)]=

2
T

E[(Y*2 −Y*2(+1))YT
2(−1)]

=
2
T

E[Y*2 YT
2(−1) −L*12 Y*1 YT

2(−1)]=
2
T

E[Y*2 YT
2(−1)]

=
2
T

E[Y*2 (YT
2 −YT

1 LT
12)]=G22 −G21 LT

12. (22)

Note that the second term of the third equality is equal to a q2 by q2 matrix of zeros since
Y2(−1) is uncorrelated with Y1 and therefore E[L*12 Y*1 YT

2(−1)]= 0. The result from equation
(22) shows that the calculation of G22(−1) requires G22, G21 and L12. Calculations of G22 and
G21 are given in equations (21d, e), and the frequency response matrix L12 is estimated using
the conditioned ‘‘Hc1’’ frequency response estimation method (18). Therefore, in order to
determine L12 and ultimately G22(−1), the PSD matrices G11 and G12 must also be calculated,
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where G11 is determined from equation (21d) and G12 =GH
21 (the superscript H indicates

the Hermitian transpose). In general (rQ i, j),

Gij(−1:r) =
2
T

E[Y*i YT
j(−1:r)]=

2
T

E$Y*i 0YT
j − s

r

k=1

YT
j(+k)1%

=
2
T

E$Y*i 0YT
j − s

r

k=1

YT
k(−1:k−1) LT

kj 1%=Gij − s
r

k=1

Gik(−1:k−1) LT
kj

=Gij(−1:r−1) −Gir(−1:r−1) LT
rj . (23)

The result from equation (23) reveals a recursive algorithm. Calculation of Gij(−1:r) starts
with the computation of Gij from equation (21e). Next, Gij(−1) is calculated:

Gij(−1) =Gij −Gi1 LT
1j . (24)

Then, Gij(−2) is calculated:

Gij(−2) =Gij(−1) −Gi2(−1) LT
2j , (25)

where Gij(−1) has already been calculated from equation (24), Gi2(−1) =Gi2 −Gi1 LT
l2, and L2j

and L12 are estimated using equation (18). This method is continued until the calculation
of Gij(−1:r−1) is reached. The frequency response matrix Lrj of equation (23) is estimated
using equation (18) which requires the PSD matrices Grj(−1:r−1) and Grr(−1:r−1). The same
process is executed for these conditioned PSD matrices and for calculating Gir(−1:r−1) of
equation (23). As another example, consider the calculation of Gij(−1:3), i, jq 3. Equation
(23) is illustrated graphically in Figure 8(a) for r=3. Notice that in order to calculate
Gij(−1:3), Gi2(−1) and Gi3(−1:2) must first be calculated as illustrated in Figures 8(b) and (c).

Note that the subscripts i and/or j can be replaced by X for calculating conditioned PSD
matrices involving the response vector. Likewise, F can replace the subscripts i and/or j
for calculating the conditioned PSD matrices involving the excitation vector. These
substitutions are necessary for the estimation of the linear dynamic compliance matrix by
equations (20a, b).

6. IDENTIFICATION OF THE COEFFICIENTS OF THE NON-LINEAR FUNCTION
VECTORS

The coefficient matrices Aj are recovered by re-examining equation (8):

F(v)=B(v)X(v)+ s
n

j=1

Aj Yj (v). (26)

Transposing equation (26) and pre-multiplying by Y*i(−1:i−1) (v),

Y*i(−1:i−1) (v)FT(v)=Y*i(−1:i−1) (v)XT(v)BT(v)+ s
n

j=1

Y*i(−1:i−1) (v)YT
j (v)AT

j . (27)

Taking (2/T)E[.] yields

GiF(−1:i−1) (v)=GiX(−1:i−1) (v)BT(v)+ s
n

j=1

Gij(−1:i−1) (v)AT
j . (28)
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Figure 12. Estimation of the non-linear elastic force coefficient b2 of Example I. ——, Estimation by equation
(31); w, true value of coefficient. (a) Real part of b2 (b) imaginary part of b2.

T 6

Coefficients of non-linear elastic force terms

Example Coefficient Spectral mean Actual value % error of real part

1 a2 −7·96−1·46E−2i MN/m2 −8·00 MN/m2 0·5
b2 500·26+1·02i MN/m3 500·00 MN/m3 0·1

b1 1·03+2·41E−2i GN/m3 1·00 GN/m3 3·0
II b2 0·99−3·30E−3i GN/m3 1·00 GN/m3 1·0

b3 1·00−8·71E−4i GN/m3 1·00 GN/m3 0·0

b3 511·21+2·55i MN/m3 500·00 MN/m3 2·2
III a6 −487·81+9·28E−1i kN/m2 −500·00 kN/m2 2·4

g6 9·88+1·72E−2i GN/m5 10·00 GN/m5 1·2
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Notice the summation starts at i since E[Y*i(−1:i−1) (v)YT
j (v)]= 0 for all jQ i.

Pre-multiplying equation (28) by G−1
ii(−1:i−1) (v),

G−1
ii(−1:i−1) (v)GiF(−1:i−1) (v)=G−1

ii(−1:i−1) (v)GiX(−1:i−1) (v)BT(v)

+ s
n

j=1

G−1
ii(−1:i−1) (v)Gij(−1:i−1) (v)AT

j . (29)

The first term in the summation becomes AT
i . Therefore,

AT
i =G−1

ii(−1:i−1) (v)0GiF(−1:i−1) (v)−GiX(−1:i−1)(v)BT(v)− s
n

j= i+1

Gij(−1:i−1) (v)AT
j 1. (30)

Using equation (30) all of the coefficient matrices Ai can be identified by starting with the
identification of An and working backwards to the identification of A1. However, a couple

Figure 13. Estimation of the non-linear elastic force coefficient b2 of Example 1 with the employment of
frequency response synthesis. ——, Estimation by equation (31), w, true value of coefficient. (a) Real part of
b2; (b) imaginary part of b2.
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of details about equation (30) need to be discussed. First, equation (30) results in solutions
of the elements of Ai which are frequency dependent since the dynamic stiffness matrix
B(v) and all of the PSD matrices are frequency dependent. Therefore, a complex frequency
domain curve is obtained for each element of Ai . If the identification is accurate, the
spectral mean of the curves will be equal to the corresponding real valued coefficients.
Second, section 4 suggests the calculation H(v) rather than B(v). The inversion
B(v)=H−1(v) can be performed. However, if N is large, this will be a costly computation.
Also, if excitations are not applied at each response location, not all of the columns of
measured H	 (v) will be available, and therefore this inversion cannot be performed. As
another alternative, frequency response synthesis can be to employ to obtain a fully
populated H	 (v) so that the inversion B	 (v)=H	 −1(v) can be calculated [17]. However, as
will be illustrated in section 7, this approach yields poor estimates of the coefficients. To
alleviate this problem, equation (30) is post-multiplied by HT(v):

AT
i HT(v)=G−1

ii(−1:i−1) (v)0GiF(−1:i−1) (v)HT(v)−GiX(−1:i−1) (v)

− s
n

j= i+1

Gij(−1:i−1) (v)AT
j HT(v)1, (31)

where the left side of equation (31) is symbolically multiplied out since Ai is unknown. To
illustrate this algorithm consider Example I. Recall, Gaussian random excitation is only
applied to mass 1. Therefore, the measured linear dynamic compliance functions estimated
by equations (20a) or (20b) will only result in the elements of the first column of H	 (v):

H	 = &H	 11

H	 21

H	 31

?
?
?

?
?
?', (32)

where the frequency dependence (v) has again been dropped for the sake of brevity and
the symbol ? indicates unmeasured linear dynamic compliance functions. Assuming that
the necessary PSD matrices for equation (31) have been calculated, estimations of the
coefficient matrices begins with A2 (recall A2 from equation (4e)). Therefore, equation (31)
becomes

AT
2 H	 T =G	 −1

22(−1) (G	 2F(−1) H	 T −G	 2X(−1)),

[0 b2 −b2]&H	 11

?
?

H	 21

?
?

H	 31

?
? '

=G	 −1
22(−1)0[G	 2F1(−1) 0 0]&H	 11

?
?

H	 21

?
?

H	 31

?
? '−[G	 2X1(−1) G	 2X2(−1) G	 2X3(−1)]3,

b2 [? ? ?]=G	 −1
22(−1) ([G	 2F1(−1)H	 11 G	 2F1(−1) H	 21 G	 2F1(−1) H	 31]− [G	 2X1(−1) G	 2X2(−1) G	 2X3(−1)]),

b2&???'
T

=G	 −1
22(−1)2&G	 2F1(−1) H	 11

G	 2F1(−1) H	 21

G	 2F1(−1) H	 31'
T

− &G	 2X1(−1)

G	 2X2(−1)

G	 2X3(−1)'
T

3. (33a–d)
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Figure 14. Linear dynamic compliance estimates of Example II. – – –, ‘‘H1’’ estimate; ——, conditioned ‘‘Hc2’’
estimate; w, true linear dynamic compliance function. (a) Magnitude of H11; (b) phase of H11.

Notice, a problem still exists. The coefficient b2 cannot be identified since the linear
dynamic compliance functions on the left side of equation (33d) are unknown. This
problem can be alleviated by realizing that since H represents only the underlying linear
system, reciprocity relationships can be applied, i.e., Hij =Hji . With this property,
additional elements of H are available which can be used in equation (31) to solve for Ai .
Applying reciprocity relations to the measured linear dynamic compliance matrix of
Example I,

H	 = &H	 11

H	 21

H	 31

Hr
21

?
?

Hr
31

?
? ', (34)
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where the superscript r indicates linear dynamic compliance functions realized from
reciprocity. Using this matrix in equation (31),

AT
2 H	 T =G	 −1

22(−1) (G	 2F(−1) H	 T −G	 2X(−1)),

[0 b2 −b2]&H	 11

Hr
12

Hr
13

H	 21

?
?

H	 31

?
? '

=G	 −1
22(−1) 2[G	 2F1(−1) 0 0]&H	 11

Hr
12

Hr
13

H	 21

?
?

H	 31

?
? '−[G	 2X1(−1) G	 2X2(−1) G	 2X3(−1)]3,

b2 [Hr
12 −Hr

13 ? ?]=G	 −1
22(−1) ([G	 2F1(−1) H	 11 G	 2F1(−1) H	 21 G	 2F1(−1) H31]

− [G	 2X1(−1) G	 2X2(−1) G	 2X3(−1)]),

b2&H
r
12 −Hr

13

?
? '

T

=G	 −1
22(−1) 2&G	 2F1(−1) H	 11

G	 2F1(−1)H	 21

G	 2F1(−1) H	 31'
T

− &G	 2X1(−1)

G	 2X2(−1)

G	 2X3(−1)'
T

3. (35a–d)

Now b2 can be determined by using the first equation of equations (35d). The same
approach is used for A1:

AT
1 HT =G−1

11 (G1F HT −G1X −G12 AT
2 HT),

[0 a2 −a2]&H	 11

Hr
12

Hr
13

H	 21

?
?

H	 31

?
? '

=G	 −1
11 2[G	 1F1 0 0]&H	 11

Hr
12

Hr
13

H	 21

?
?

H	 31

?
? '−[G	 1X1 G	 1X2 G	 1X3]

−G12 [0 a2 −a2]&H	 11

Hr
12

Hr
13

H	 21

?
?

H	 31

?
? '3,

a2 [Hr
12 −Hr

13 ? ?]=G	 −1
11 ([G	 1F1 H	 11 G	 1F1 H	 21 G	 1F1 H	 31]− [G	 1X1 G	 1X2 G	 1X3]

−G12 a2 [Hr
12 −Hr

13 ? ?]),

a2&H
r
12 −Hr

13

?
? '

T

=G	 −1
11 2&G	 1F1 H	 11

G	 1F1 H	 21

G	 1F1 H	 31'
T

− &G	 1X1

G	 1X2

G	 1X3'
T

−G12 a2 &H
r
12 −Hr

13

?
? '

T

3. (36a–d)
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The outcome from the above example reveals the crucial employment of reciprocity
relations to the linear dynamic compliance matrix. Without these relationships it is not
always possible to calculate the coefficients of the non-linearities. This emphasizes the
need to decompose the system of Figure 5 into the uncorrelated sub-systems of
Figure 7(a). Also, note that equation (35d) and (36d) yields a one-to-one dependence
between the number of equations and the number of unknowns. This is due to the fact
that only one excitation is applied to the system. However, when multiple excitations
are simultaneously or sequentially applied, additional rows and columns of H are
known, resulting in an over-determined set of equations for the coefficients to be solved
by least squares.

7. RESULTS

To illustrate the performance of the conditioned multi-degree-of-freedom ‘‘reverse path’’
approach, the simulated data used in section 2 is also used here so that direct comparisons

Figure 15. Linear dynamic compliance estimates of Example II. – – –, Conditioned ‘‘Hc1’’ estimate; ——,
conditioned ‘‘Hc2’’ estimate; w, true linear dynamic compliance function. (a) Magnitude of H31; (b) phase of H31.
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Figure 16. Estimates of the non-linear elastic force coefficient b1 of Example II. ——, Estimation by equation
(31); w, true value of coefficient. (a) Real part of b1; (b) imaginary part of b1.

can be made between the conventional ‘‘H1’’ estimates shown in Figures 2–4 and the
conditioned ‘‘Hc1’’ and ‘‘Hc2’’ estimates. The results to follow indicate better performance
from the conditioned ‘‘Hc2’’ estimates over the conditioned ‘‘Hc1’’ estimates. This is
surprising since no measurement noise is present, and therefore equal performance would
be expected from both methods. However, it is possible that this discrepancy is due to
numerical errors present in the simulation data of these lightly damped non-linear systems.
This issue will be re-examined in an upcoming article. For this discussion, conditioned
‘‘Hc2’’ estimates are initially illustrated and compared with the conventional ‘‘H1’’ estimates
and the actual linear dynamic compliance functions synthesized from the modal properties
of Table 1. These results are then followed by illustrations comparing the ‘‘Hc1’’ estimates,
‘‘Hc2’’ estimates and the actual linear dynamic compliance functions. Modal parameter
estimation is conducted on the ‘‘Hc2’’ estimated linear dynamic compliance functions to
extract modal parameters. All of the modal parameters are estimated using a polynomial
curve fitting technique from a modal analysis software [19].
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The coefficients of the non-linear elastic force terms are estimated from the algorithm
(31). Since the ‘‘Hc2’’ estimates are more accurate than the ‘’Hc1’’ estimates, the ‘‘Hc2’’
estimates are used in equation (31) for H(v). For all of the example systems, reciprocity
relationships are employed to obtain additional elements of H(v) as illustrated in section
6. Also, since the solutions of equation (31) result in frequency domain curves for the
coefficients of the non-linear elastic force terms, the coefficients are numerically estimated
from the spectral mean of these curves in the vicinity between 0 and 125 Hz, e.g.,
ā2 = �a2 (v)�v , 0QvQ 125, where the over bar indicates the spectral mean.

Example I, consisting of the asymmetric non-linearity is first considered. Since two
different non-linear function vectors are present (equation (4b, c)), the measured linear
dynamic compliance functions are determined from the ‘‘Hc2’’ estimate

H	 T =G	 −1
XF(−1:2) G	 XX(−1:2), (37)

where G	 XF(−1:2) and G	 XX(−1:2) are calculated from the algorithm (23). Since a single excitation
is applied to mass 1 (i.e., F	 =F1), only the first column of H	 is identified. Also, since

Figure 17. Estimates of the non-linear elastic force coefficient b2 of Example II. ——, Estimation by equation
(31); w, true value of coefficient. (a) Real part of b2; (b) imaginary part of b2.
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Figure 18. Estimates of the non-linear elastic force coefficient b3 of Example II. ——, Estimation by equation
(31); w, true value of coefficient. (a) Real part of b3; (b) imaginary part of b3.

G	 XF(−1:2) is a 3 by 1 column vector, a pseudo-inverse is used in equation (37). A sample is
shown in Figure 9. Since the true linear dynamic compliance functions have already been
shown in Figures 2–4, only every twentieth spectral line is plotted for these curves to
improve the clarity of the figure. This is also true of figures to follow. Notice, a
considerable improvement has been made when comparing the ‘‘Hc2’’ and ‘‘H1’’ estimate.
Figure 10 illustrates a sample ‘‘Hc1’’ estimate of the linear dynamic compliance functions
given by

H	 T =G−1
FF(−1:2) GFX(−1:2). (38)

Estimation of the first and second modes are not well predicted when compared with the
‘‘Hc2’’ estimate. Nonetheless, this is still an improvement over the ‘‘H1’’ estimate.

The estimates by equation (37) are used in the modal parameter estimation software to
estimate the natural frequencies, modal damping, and mode shapes of the underlying linear
system. Results are listed in Table 4. The percentage error in the natural frequencies and
damping is also given in Table 5. To assess the accuracy of the mode shape estimates, the
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modal assurance criterion (MAC) is used [20]. Since the ‘’Hc2’’ estimates show some
degeneracy in the magnitude of the first mode, this is reflected upon the estimated damping
which is in error by 70%. Nonetheless, overall the modal parameters are well predicted.

The coefficients of the non-linear elastic force terms are identified via equation (31). As
mentioned before, reciprocity as illustrated in the example of section 6 is employed to
identify these coefficients, (equations (35a–d) and (36a–d)). The resulting solutions are
shown in Figures 11 and 12. It is not evident at this point why large deviations from the
actual values occur. However, these deviations tend to be largest in the vicinity of the
modes. An attempt to rectify answers to this phenomenon will be addressed in subsequent
research. Averaging the values from these curves at each sample frequency, the spectral
means of the coefficients are calculated and are listed in Table 6. The resulting spectral
means for the coefficients are complex valued, indicating errors in the estimates since the
actual coefficients are real valued. However, the imaginary parts of the spectral means are

Figure 19. Linear dynamic compliance estimates of Example III. – – –, ‘‘H1’’ estimate ——, conditioned ‘‘Hc2’’
estimate; w, true linear dynamic compliance function. (a) Magnitude of H44; (b) phase of H44.
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Figure 20. Linear dynamic compliance estimate of Example III. – – –, Conditioned ‘‘Hc1’’ estimate; ——,
conditioned ‘‘Hc2’’ estimate; w, true linear dynamic compliance function. (a) Magnitude of H31; (b) phase of H31.

several orders of magnitude less than the real parts, and the percentage errors of
the real parts of the spectral means from the actual real valued coefficients are all within
1%.

Recall section 6, where it was suggested to employ frequency response synthesis in
order to obtain a fully populate linear dynamic compliance matrix for the solution
of the coefficients by equation (30). This approach is illustrated here for the estimation
of b2. The second and third columns of the linear dynamic compliance functions are
synthesized from the estimated modal properties. Note that since the linear dynamic
compliance matrix is now fully populated, there are three equations for one unknown
b2 which is solved for in a least squares sense. The resulting spectral curve for b2 is
shown in Figure 13; b�2 =521·92−37·63i MN/m3 and the error in the real part is
4·38%. Although the error is not large, the curve in Figure 13 may mislead one to
believe that b2 is not independent of frequency. Similar results were obtained for the
other examples.
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Example II is considered next for identification where a single non-linear function vector
exists (equation (5f)), therefore the measured linear dynamic compliance functions are
determined from the ‘‘Hc2’’ estimate

H	 T =G	 −1
XF(−1) G	 XX(−1). (39)

As with Example I, a pseudo-inverse is used in the solution of equation (39) since the
measured PSD matrix G	 XF(−1) is a 3 by 1 column vector. A sample estimation is shown in
Figure 14. Likewise, the ‘‘Hc1’’ estimate of the linear dynamic compliance functions is

H	 T =G−1
FF(−1) GFX(−1) (40)

and a sample is illustrated in Figure 15. Significant improvements are obtained from both
of these results when compared to the ‘‘H1’’ estimate. Only a slight discrepancy can be seen
where the ‘‘Hc1’’ method underestimates the magnitude of the first mode. Estimated modal
parameters from equation (39) are listed in Table 4 and an error analysis in Table 5. Like
Example I, the modal parameters of the underlying linear system are well predicted.

Figure 21. Estimate of the non-linear elastic force coefficient a3 of Example III. ——, Estimation by equation
(31); w, true value of coefficient. (a) Real part of a3; (b) imaginary part of a3.
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Figure 22. Estimate of the non-linear elastic force coefficient a6 of Example III. ——, Estimation by equation
(31); w, true value of coefficient. (a) Real part of a6; (b) imaginary part of a6.

Using the results from equation (39) in equation (31) the coefficients of the non-linear
elastic force terms are identified. Since a single excitation is appiled to mass 1, reciprocity
relations are necessary in order to identify all of the coefficients. Results are shown in
Figures 16–18, and Table 6 lists the numerical estimates of the coefficients, where the
imaginary parts are at least two orders of magnitude less than the real parts and the
percentage error of the real parts from the actual real valued coefficients is 3% or less.
Overall, the system has been well identified.

Example III, the five-degree-of-freedom system, is finally considered. Three non-linear
function vectors exist (equations (6e–g)), therefore, the ‘‘Hc2’’ estimate is

H	 T =G−1
XF(−1:3) G	 XX(−1:3). (41)

A sample estimate is illustrated in Figure 19. A considerable improvement has been made
in estimating this linear dynamic compliance function. Likewise, the ‘‘Hc1’’ estimate is

H	 T =G−1
FF(−1:3) GFX(−1:3), (42)
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and a sample estimate is shown in Figure 20. Like Example I, the ‘‘Hc1’’ method does not
estimate the linear dynamic compliance function as well as the ‘‘Hc2’’ method. Estimated
natural frequency, modal damping and mode shapes from the estimates of equation (41)
are given in Table 4 with an error assessment in Table 5. Aside from the estimated damping
of the first mode and the estimated natural frequency of the last mode, the modal
parameters are well predicted.

Shown in Figures 21–23 are estimates of the coefficients of the non-linear elastic force
terms via equation (31) using the results from equation (41) and the employment of
reciprocity relations to obtain additional elements of H	 . The numerical estimates are listed
in Table 6 along with the true values and percentage error in the real parts. The imaginary
parts of the spectral means are again several orders of magnitude less than the real parts
and the errors of the real parts from the actual values are all less than 3%. Overall, this
system has been well identified.

Figure 23. Estimate of the non-linear elastic force coefficient g6 of Example III. ——, Estimation by equation
(31); w, true value of coefficient. (a) Real part of g6; (b) imaginary part of g6.
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7. CONCLUSION

It has been shown in this article that conventional frequency response estimation
methods such as the ‘’H1’’ and ‘‘H2’’ estimates are often inadequate for accurately
estimating the linear dynamic compliance functions of multi-degree-of-freedom non-linear
systems when excited by Gaussian random excitations. Therefore, a new spectral approach
has been developed based on a ‘‘reverse path’’ formulation as available in the literature
for single-degree-of-freedom non-linear systems [12], with emphasis on the mathematical
development for application to multi-degree-of-freedom systems. With new formulation,
conditioned ‘‘Hc1’’ and ‘‘Hc2’’ estimates of linear dynamic compliance functions can now
be obtained which drastically reduce, or even eliminate in some cases, the contamination
introduced by non-linearities. This allows for the identification of the modal parameters
of the underlying linear system without any undue influences caused by non-linearities. The
coefficients of analytical functions which describe the non-linearities are also estimated by
this new method. These non-linearities may be local or distributed and they may exist at
or away from the locations of the excitations.

This new spectral approach has been tested on three example systems with polynomial
non-linearities. These systems were excited by Gaussian random excitations applied at
either one or two locations. The multiple-input/multiple-output data from these systems
have been successfully used and the results illustrate benefits of this approach. However,
further refinements are necessary before the method can be applied to the measured
input/output data of ‘‘real’’ non-linear systems. For instance, modifications need to be
made to accommodate for uncorrelated measurements noise. Also, since coherence
functions are often used as a means to determine the validity of spectral measurements,
development of similar quantifiers for the multi-degree-of-freedom ‘‘reverse path’’
formulation are also necessary. However, calculation of these functions is much more
extensive for conditioned systems; therefore, this formulation has been reserved for an
upcoming article. Finally, as pointed out earlier in this article, the nature or type of
non-linearities yj (t) present must be known a priori for the method to be successful when
applied to practical non-linear systems. However, this information may not be available
under ‘‘real’’ conditions. Hence, research is currently being conducted to alleviate this
limitation and progress will be reported in subsequent articles.
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APPENDIX: LIST OF SYMBOLS

Bold characters indicate matrices and vectors

t timeA coefficient matrix of non-linear func-
tion vectors T time window

B linear dynamic stiffness matrix x generalized displacement vector
C linear damping matrix X spectra of x
f e elastic force y non-linear function vector
f generalized excitation vector with Y spectra of y

Gaussian time history a coefficient of quadratic non-linear stiff-
F spectra of f(t) ness terms
G single-sided cross-spectral density b coefficient of cubic non-linear stiffness

matrix terms
H linear dynamic compliance matrix Dt time step for numerical simulation
i z−1 G matrix of single-sided spectral density

matrices involving the response, the nk linear stiffness element
non-linear function vectors and theK linear stiffness matrix
excitationL frequency response function of con-

g coefficient of fifth order non-linearditioned ‘‘reverse path’’ model
stiffness termsM mass matrix

Dx relative displacementM number of measured excitations
v frequencyMAC modal assurance criterion
J matrix of single-sided spectral densityN dimension of system

matrices involving the response and then number of types of non-linearities
n non-linear function vectorsp total number of non-linearities

PSD power spectral density C matrix consisting of the dynamic
q number of locations an unique non- stiffness matrix and the coefficient

linearity exists matrices
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(−1: j) uncorrelated with the 1st through the0 null matrix
? unmeasured dynamic compliance func- jth non-linear function

tions (−1:n) uncorrelated with the 1st through the
nth non-linear function, i.e. linear

Operators component
X response vectorE[.] expected value

F[.] Fourier transform
Im[.] imaginary part Superscripts
L[.] linear operator

* complex conjugateN[.] non-linear operator H Hermitian transposeRe[.] real part m exponent of non-linearityQ·qv spectral mean r determined from reciprocity
T transposeSubscripts
−1 inverse1, 2 conventional estimates of H

c1, c2 conditioned estimates of H
EmbellishmentsF excitation vector

j jth non-linear function 0 measured quantity
k kth junction . first derivative with respect to time

.. second derivative with respect to time(+j) correlated with the jth non-linear
function – spectral mean


